The three-dimensional analysis of cell types and their locations by spatial transcriptomics provides key information of their interactions within tissues or organs. Based on this technology, scientists at the Wellcome Sanger Institute have developed an AI tool called Nichecompass, which shows a comprehensive view of the cancer microenvironments, the different cells, their locations, and how they communicate with each other through different molecules inside the tumor. This AI could process data in an hour and compare samples before and after a treatment.
The three-dimensional analysis of cell types and their locations by spatial transcriptomics provides key information of their interactions within tissues or organs. Based on this technology, scientists at the Wellcome Sanger Institute have developed an AI tool called Nichecompass, which shows a comprehensive view of the cancer microenvironments, the different cells, their locations, and how they communicate with each other through different molecules inside the tumor. This AI could process data in an hour and compare samples before and after a treatment.
Scientists at the Institute of Cancer Research (ICR) in the U.K. are developing a technology that analyzes, in vitro, how the 3D morphology of cancer cells changes when exposed to a compound, using AI to predict their response to new treatments. The researchers estimate that their methodology could accelerate drug development by 6 years, by ruling out unsuccessful drugs and thus reducing the number of preclinical trials.