RNA editing in schizophrenia (SCZ)-associated genes was decreased in postmortem brains of individuals of European descent, according to a study from the University of California, Los Angeles (UCLA). The scientists obtained the RNA editome from SCZ brains to detect the sequence changes in their RNA and observed hypoediting in noncoding regions related to mitochondrial function, such as the mitofusin-1 (MFN1) gene.
Treatment with a cell-penetrating peptide that prevented nuclear export of unprocessed C9ORF72 RNA and its subsequent translation into neurotoxic dipeptide repeat proteins reduced motor neuron damage and death both in fruit fly models of amyotrophic lateral sclerosis (ALS), and in patient-derived induced neuronal precursor cells (iNPCs). The work suggests that targeting nuclear export could be a therapeutic option in ALS, and possibly also frontotemporal dementia (FTD), where C9ORF72 mutations also play a role.